

# U.S. DEFENSE TECHNOLOGY PRIORITIES

Market Trends and Applications Across Electronics and Software in Modern C5ISR<sup>(1)</sup>





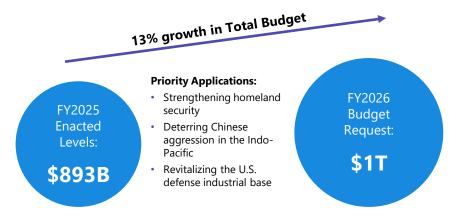


## **Table of Contents**

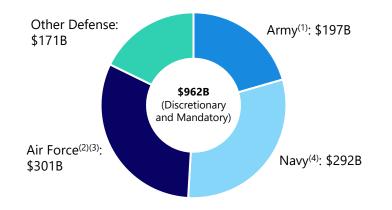
| Macro Environment: Defense Budget Highlights and Industry Trends                     | 2  |
|--------------------------------------------------------------------------------------|----|
| Mapping of Select Privately Held Market Participants                                 | 17 |
| Primer: C5ISR Software and Electronics Applications within the Connected Battlefield | 28 |
| Relevant Public Companies and<br>Select Precedent Transactions                       | 46 |
| Solomon Partners Overview                                                            | 54 |



1


# MACRO ENVIRONMENT: DEFENSE BUDGET HIGHLIGHTS AND INDUSTRY TRENDS

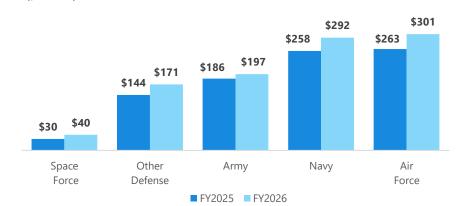



## **Department of War FY2026 Budget Highlights**

FY2026 Defense budget signals historic investment surge in emerging tech, strategic modernization, and operational readiness

#### FY2026 Total National Defense Budget




#### FY2026 DoW Budget Service Breakdown



#### Tech-Related Strategic Priorities<sup>(5)</sup>

| Priority                             | Detail                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------|
| Hypersonics & Long-<br>Range Weapons | \$10B+ for hypersonic and long-range strike systems to counter near-peer threats               |
| Space Force                          | \$40B+ to strengthen satellite resilience, space domain awareness, and orbital defense         |
| Cyber & Communications               | \$15B+ for cyber defense, secure interoperable networks, and zero-trust architecture           |
| R&D & Emerging Tech                  | \$20B+ for hypersonics, quantum computing, autonomy, and microelectronics to sustain tech edge |

#### DoW Budget Change by Service (\$ in billions)





Sources: U.S. DoW Background Briefing on FY2026 Defense Budget, FY2025 & FY2026 Defense 3. Additional Air Force budget details available on page 12

<sup>1.</sup> Additional Army budget details available on page 10 2. Inclusive of Space Force budget

<sup>4.</sup> Additional Navy budget details available on page 11

<sup>5.</sup> Additional strategic priorities details available on page 5

## **Overview of Key Areas and Spending Trends**

The Pentagon looks to institute emerging technology on the battlefield faster

| System                                                                                        | Commentary                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hypersonics                                                                                   | <ul> <li>Joint Hypersonics Transition Office (JHTO): Funding up 121% to \$651M</li> <li>Focus on rapid development and deployment of Mach 5+ systems across domains</li> </ul>                                                                                                                              |
| Defense Innovation Unit (DIU)                                                                 | <ul> <li>+101% YoY to \$975M (mostly via reconciliation)</li> <li>Supports fast-tracking Al, autonomy, quantum tech, and advanced manufacturing</li> </ul>                                                                                                                                                  |
| Missile Defense – Strategic Home<br>Intervention and Early Leadership<br>Development (SHIELD) | <ul> <li>PEO Missiles and Space: +52% YoY to \$12.4B</li> <li>Central to building next-gen missile defense architecture</li> </ul>                                                                                                                                                                          |
| Nuclear Modernization                                                                         | <ul> <li>Bombers Directorate: +43% YoY to \$8.8B</li> <li>B-21 Raider: \$7.3B in FY26, up \$2B from FY25</li> </ul>                                                                                                                                                                                         |
| Army Network Modernization                                                                    | <ul> <li>Command Post Integrated Infrastructure (CPI2): +1,498% YoY to \$723M</li> <li>Enhances mobile, modular, and resilient command post capabilities</li> </ul>                                                                                                                                         |
| Autonomous & Loitering<br>Munitions                                                           | <ul> <li>Funding for one-way attack systems like GOALKEEPER, WHIPLASH, and LASSO doubled YoY to \$801M</li> <li>Reflects lessons from Ukraine and growing interest in attritable systems</li> </ul>                                                                                                         |
| Counter-UAS & Directed Energy                                                                 | <ul> <li>\$1.1B in 2026 for counter-small drone tech using lasers and directed energy</li> <li>Marine Corps' Ground based Air Defense (GBAD) program is a key initiative</li> </ul>                                                                                                                         |
| Cyber & Quantum                                                                               | <ul> <li>Cyberspace Portfolio: \$14.5B in FY25, projected to reach \$36B by FY29</li> <li>Heavy emphasis on the Research Development Test &amp; Evaluation (RDT&amp;E) program and operations</li> <li>Quantum tech now has its own budget line, including post-quantum cryptography and sensors</li> </ul> |



Sources: Obviant

## **Technological Priorities in the FY2026 Defense Budget**

Strategic investments driving U.S. Defense innovation across key technology domains

## Hypersonics & Long-Range Weapons

#### **Overview**

- \$6.5B for conventional / hypersonic munitions
- \$3.9B for hypersonic weapons including ARRW and LRHW

#### **Space Force**

#### **Overview**

 \$40B+ for Space Force (growth of ~30% YoY)

## Cyber & Communications

#### **Overview**

 \$15.1B for cybersecurity and cyberspace operations

#### R&D and Emerging Tech

#### **Overview**

- \$20.3B for Science & Technology (+8%)
- Focus areas: hypersonics, quantum computing, autonomous systems, microelectronics

#### **Highlights**

- Reflects urgency in countering near-peer threats with faster, longer-range strike capabilities
- Investments support deterrence and rapid response in contested environments
- Focus on operationalizing systems like ARRW and LRHW for deployment readiness

#### **Highlights**

- Rapid growth signals strategic shift towards space as a warfighting domain
- Prioritizing satellite resilience, space domain awareness, and orbital defense
- Enhancing capabilities to ensure U.S. dominance in increasingly contested space environments

#### **Highlights**

- Strengthening cyber posture to defend against sophisticated nation-state threats
- Emphasis on secure, interoperable communications across joint and allied forces
- Investments in zero-trust architecture and Al-driven threat detection reflect modernization goals

#### **Highlights**

- Focused on maintaining longterm technological superiority over adversaries
- Prioritizing innovation in quantum computing, autonomous systems, and microelectronics
- Funding supports transition from research to fielded capabilities across domains











## Select Key Operating Concepts in the Future Connected Battlefield

The Connected Battlefield provides forces with a comprehensive, shared understanding of the operational environment

The Connected Battlefield, also known as the connected battlespace or the Internet of Battlefield Things (IoBT), is a network of interconnected military entities and systems that use real-time data and analysis to create enhanced situational awareness and enable faster, more informed decision-making

#### **Examples of Components and Technologies**

#### **Sensors and Wearable Technology:**

Biometric monitors, GPS devices, night-vision aids, and other sensors to collect data from soldiers and equipment to track readiness and provide tactical information



#### **Communication and Connectivity:**

Transmitter-receivers, mobile broadband, and satellite systems facilitate seamless, real-time flow of data across diverse platforms and domains



#### Artificial Intelligence (AI) and Data Analytics:

Al and big data analytics are used to process vast amounts of information from the network, transforming it into actionable intelligence for commanders



#### **Autonomous Systems and Robotics:**

Remotely piloted vehicles, weaponized drones, and robotic systems contribute to intelligence, surveillance, and reconnaissance, providing additional data streams to the network



#### **Cloud and High-Performance Computing:**

Secure cloud processing and high-performance computing power are used to analyze and interpret data, enabling secure information sharing across security domains



#### Benefits of a Connected Battlefield

- Enhanced Situational Awareness: Real-time data streams create a unified, comprehensive view of the operational environment, helping decision-makers understand the "big picture"
- Improved Decision-Making: The ability to process and share data quickly allows for machine-speed decision-making, giving forces a tactical and operational advantage
- Increased Force Effectiveness: Better intelligence and coordination improve overall mission effectiveness and lead to a more efficient and informed execution of operations
- Greater Asset Readiness: Data from connected assets and logistics networks provides commanders with a real-time view of available resources, supporting better asset management

#### Potential Challenges to Consider

- **Data Overload:** The sheer volume of data generated by connected systems presents a challenge in collecting, managing, and distilling it into actionable insights
- Cybersecurity Risks: A connected network is vulnerable to cybersecurity threats, requiring robust measures to protect sensitive information
- **Technological Integration and Interoperability:** Ensuring that diverse systems and technologies can communicate seamlessly is a complex technical and logistical challenge



# Select Key Operating Concepts in the Future Connected Battlefield (Cont.)

The Modular Open Systems Approach (MOSA) creates an affordable and adaptable system for defense acquisition programs

#### Introduction to MOSA

- Connected battlefield networks must function seamlessly, dynamically routing data across systems and sensors that are made by different suppliers and were developed across different generations – therefore, adopting a Modular Open Systems Approach, or MOSA, is crucial
- MOSA is a DoW integrated business and technical strategy to achieve competitive and affordable acquisition and sustainment
- The strategy calls for designing weapons and defense systems by breaking them into interchangeable, modular components that use standard, non-proprietary interfaces
- This approach allows for increased interoperability, faster technology upgrades, reduced acquisition and sustainment costs, and greater competition among vendors for different parts of a system
- The goal is to break the cycle of vendor lock-in, and the slow, costly and often proprietary nature of defense system integration, and instead accelerate the fielding of new capabilities and allow for faster upgrades and more competition

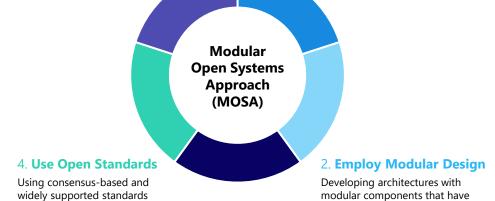
#### Key Principles of MOSA

#### 5. Certify Conformance

to ensure different vendors'

technologies can integrate

effectively


Assuring compliance with the defined open interface standards through rigorous verification and validation processes

#### 1. Establish Enabling Environment

Creating a supportive framework for MOSA implementation through supportive requirements and business practices

well-defined functionality and

interfaces



#### 3. Designate Key Interfaces

Identifying specific interfaces that impact performance, cost, and support



# Select Key Operating Concepts in the Future Connected Battlefield (Cont.)

The System-of-Systems approach emphasizes the overall capability and function of a collection of interconnected systems (in this example aircraft) to create synergistic outcomes

In the modern battlefield, the platform that finds a target isn't necessarily the one that engages it. Any sensor in the network, such as an F-35 deep inside enemy territory, or a CCA orbiting nearby can potentially cue any shooter, such as an F-15EX orbiting further back through a battlefield network. The airborne System of Systems example leverages a combination of fourth and fifth generation manned fighters, and increasingly uncrewed collaborative combat aircraft (CCAs), where each perform specialized roles in a highly contested battle space

#### Fifth Generation Fighters

- Fifth generation platforms like the F-22 Raptor and F-35 Lightning II (both made by Lockheed Martin) are the tip of the spear
- Defined by their multispectral stealth, meaning they are hard to detect by various types of sensors, not just radar
- Their key attributes allow them to penetrate and survive inside modern integrated air defense systems (IADs), where older legacy aircraft simply cannot operate safely
- In a degraded C5ISR environment, their primary role isn't necessarily to be the first to shoot, but instead act as the forward sensor and battle manager for the entire force package
- They use their stealth and their fused sensor picture, combining radar, IR, and EW data, to build situational awareness for the wider force and direct the fight, potentially hewing weapons from other platforms



#### Fourth Generation Fighters

- Fourth generation fighters, like the F-15EX Eagle II or the F-18 Super Hornet (both made by Boeing), generally lack the all-aspect, broadband stealth required for deep penetration against a peer adversary's modern defenses
- Much easier to detect but possess a significant advantage in payload capacity, or "magazine depth", as opposed to a stealth fighter like the F-35 which is limited to the weapons it can carry in its internal bays to maintain its low observable signature a fourth-generation aircraft operating further back can carry a much larger and more diverse ordinance load on external pylons
- Operate from less contested airspace further away from the densest threats, and launch long-range weapons based on targeting data provided by those forward deployed fifth generation assets or CCAs



#### Collaborative Combat Aircraft (CCA)

- CCAs are semi-autonomous, often jet-powered, uncrewed systems designed to operate as wingmen in close coordination with manned fighters (Boeing, Northrop Grumman, General Atomics and Anduril have been selected by the U.S. Navy to produce conceptual CCA designs)
- The U.S. Air Force is envisioning a future fleet incorporating potentially thousands of these platforms
- Replicator, a DoW program, intends to pioneer ways to cheaply produce large amounts of collaborative drones for the U.S. military
- CCAs fundamentally change the operational calculus by allowing commanders to disaggregate capabilities: Instead of concentrating all the expensive sensors, weapons, jammers and communication systems onto a single, high-value, manned platform like an F-35, these functions can be distributed across multiple, lower-cost, uncrewed airframes they can be equipped for a variety of specialized missions
- CCA's are being designed with a significant degree of autonomy, allowing them to navigate, manage their systems and even
  execute certain mission tasks like searching an assigned area in communications denied environments





## U.S. Defense Programs of Industrial Policy Magnitude

The global rearmament exposed a frail supply chain of insufficient depth, across drones, missiles, naval power and the components that support it, from electronics to tight tolerance precision components

#### Golden Dome Missile Defense

- Proposed next-generation missile defense shield aimed at protecting the U.S. homeland from ballistic, hypersonic, and cruise missile threats
- \$25B initial investment toward a \$175B multi-layered, spaceintegrated system

## Continuous Modernization Framework

- CMFF<sup>(1)</sup> implements iterative upgrades to combat systems and platforms, ensuring faster fielding of next-generation technologies
- Aligns modernization efforts across land, air, cyber, and space domains to maintain overmatch against peer adversaries

## **Drone Dominance Directive**

- Initiated by Secretary of War Pete Hegseth to accelerate U.S. military drone capabilities
- Catalyst for building a UAS marketplace – a curated online space connecting units with vetted industry partners

## Replicator Initiative

- Accelerated effort to deliver thousands of attritable autonomous drone systems across multiple domains
- Replicator-1 is focused on mass deployment and Replicator-2 targets countersmall UAS threats

## **Collaborative Combat Aircraft (CCA) Program**

- Aims to deploy 1,000+ autonomous aircraft to team with F-35s and NGAD fighters
- Selected vendors Anduril and General Atomics are developing flight test articles
- Backed by a projected \$6B investment through FY2028

## Naval Shipbuilding and Submarine Supply Chain

- Navy aims for 381 ships and 134 unmanned vessels by 2045, including Columbia and Virginia class submarines, but progress delayed by material, vendor, and labor shortages
- NAVSEA 21<sup>(2)</sup> and fleet upgrade programs compete for limited shipyard capacity, slowing timelines for new construction & recapitalization

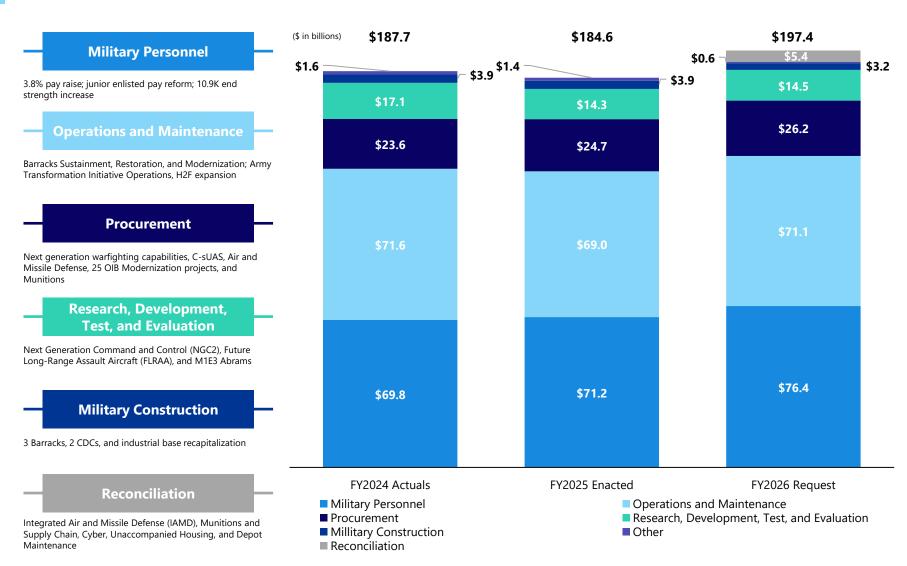
## **Commercial Off-the-Shelf** (COTS) **Procurement**

- Space Force will increase purchases of ready-made space systems and components from commercial vendors to speed delivery
- Internal development will focus only on mission-critical technologies to reduce cost and speed fielding

#### Missile and Ordinance Production Shortages

- Missile and ordinance output goals are slowed by supply chain disruptions, labor gaps, and limited industrial capacity
- The U.S. Government is expanding vendors, funding capacity upgrades, and investing in workforce development to stabilize production

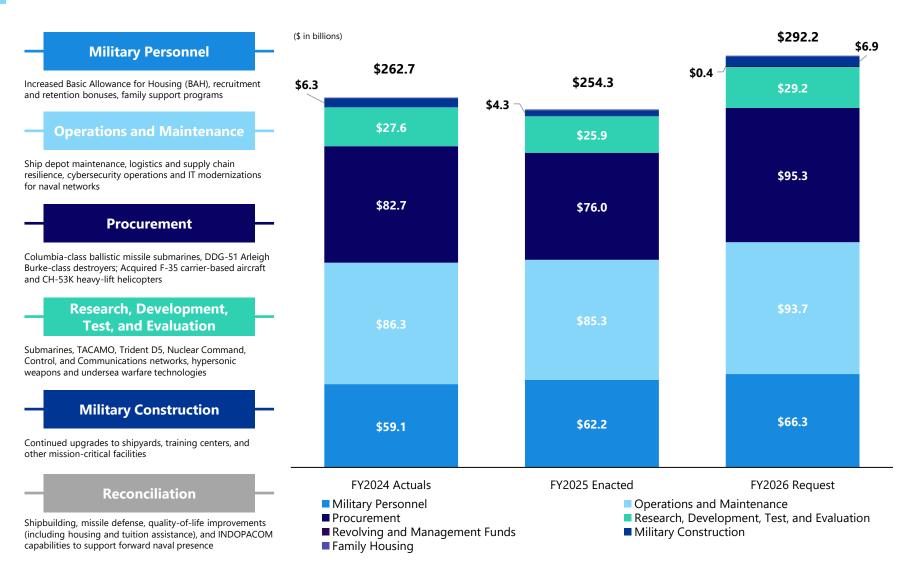
Sources: MeriTalk, DefenseScoop, Congressional Budget Office, DAU


NAVSEA 21 is the U.S. Navy organization responsible for life-cycle management of in-service surface ships, including maintenance, modernization, and inactivation. NAVSEA overall manages ~\$30 billion annually, and SEA 21's modernization work has involved multi-billion-dollar investments



<sup>1.</sup> CMFF is defined as the C5ISR / EW Modular Open Suite of Standards Mounted Form Factor, and is a U.S. Army program providing a common chassis for vehicles and aircraft to host plug-in cards for navigation, communications, and electronic warfare; estimated funding is in the hundreds of millions of dollars; key participants include Pacific Defense, Leonardo DRS, Thales, BAE Systems, Palantir, MAXISIQ, Regal Technology Partners, and STC (Arcfield)

## **Army's Proposed Budget**


#### Budget changes reflect a push for readiness and modernization





## Navy's Proposed Budget

#### Budget changes reflect a push for readiness and modernization





## Air Force's Proposed Budget<sup>(1)</sup>

#### Budget changes reflect a push for readiness and modernization



3.8% pay raise; junior enlisted pay reform; increased housing and sustenance allowances, but no change to end strength of 495,300 Airmen and Guardians

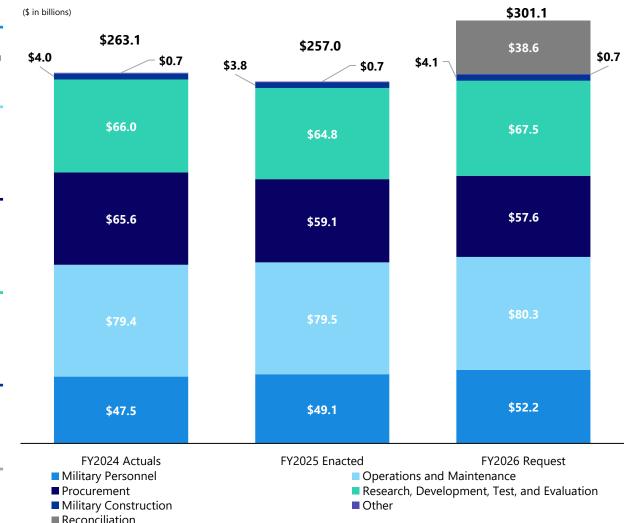
#### **Operations and Maintenance**

Increased funding for flying hours, weapon system sustainment, and operational training infrastructure, especially for Indo-Pacific operations

#### **Procurement**

Next-generation air dominance (F-47), F-35 Block 4, KC-46A tankers, B-21 bombers, and advanced munitions (including hypersonics and JASSM-ER), while recapitalizing the tanker and airlift fleets

#### Research, Development, Test, and Evaluation


Sentinel ICBM modernization, B-21 integration, Collaborative Combat Aircraft (CCA), Advanced Battle Management System (ABMS), hypersonics, and space and cyber capabilities

#### **Military Construction**

Resilient forward basing, infrastructure upgrades, agile combat employment construction and support for Indo-Pacific and global operations

#### Reconciliation

Accelerating modernization, closing capability gaps, and supporting the nuclear triad and space operations





## **Space Force's Proposed Budget**

#### Budget changes reflect a push for readiness and modernization



3.8% pay raise; junior enlisted pay reform; increased housing and sustenance allowances; 600 end strength increase

#### **Operations and Maintenance**

Fund global mission operations to deliver space capabilities, preserve freedom of action, and enable Homeland Defense through Golden Dome

#### **Procurement**

Investment in National Security Space Launch (NSSL) and Space Development Agency (SDA) launches to sustain reliable space access; increased launch tempo from Vandenberg and Patrick Space Force Bases

#### Research, Development, Test, and Evaluation

Advancing technologies for space superiority and enterprise resilience, including Space Domain Awareness, Command and Control systems, and intelligence capabilities

#### Reconciliation

Accelerating modernization, closing capability gaps, and strengthening deterrence against a dynamic competitor; building a ready force to prevail across competition, crisis, and conflict while enhancing nuclear and space operations







## Army Priorities As an Example of Approach to Force Modernization

The Army is accelerating transformation through open systems, rapid acquisition, and targeted investments in electronic warfare, command and control, and unmanned capabilities

#### **Executive Action Items for Armed Services**

Amended Modular Open Systems to require nonproprietary, machinereadable interfaces for third-party integration

New portfolio acquisition executives hired to speed up capability fielding and promote innovation Expanded commercial solutions openings to allow sole-source follow-ons and consumption-based pricing

USSOCOM<sup>(1)</sup> investing in multi-mission electronic countermeasures and electronic warfare family of systems to strengthen electronic warfare

Enabled open architecture and rapid qualification to boost iteration, competition, and supply chain resilience

#### Purchasing / Investing Priorities

Next Generation

Command and Control

 \$2.9B investment to improve battlefield coordination Counter-UAS Capabilities

 \$858M to integrate into maneuver platoons and close capability gaps Project Convergence 2026

 Demonstrations to refine offensive / defensive operations and enable joint force integration Army Transformation Initiative (ATI)

- Divestment of legacy systems (e.g., Paladin, HMMWV)
- Investment in modular, openstandard platforms like FLRAA<sup>(2)</sup> and M1E3
- Forces Structure optimization to support multi-domain operations

Loitering Munitions & COTS UAS

 5 BCTs-worth of loitering munitions and 10 BCTs-worth of commercial drones



## **Political Leadership Voices**

National leaders emphasize rapid modernization, deterrence, and innovation to secure America's future

"The good news is that we make the best military equipment in the world by far."

- Donald J. Trump, President of the United States

"To carry out the President's mission, we have 3 core priorities, as was mentioned: restore the warrior ethos, rebuild our military, and re-establish deterrence."

- Pete Hegseth, Secretary of War

"We must not surrender our technological edge or allow our forces to be underequipped and outgunned."

- Tom Cole, U.S. Representative

"We have a shared commitment to...providing our war fighters with the advanced capabilities and capacity and cuttingedge technologies required to dominate our adversaries."

- Dan Caine, Chairman of the Joint Chiefs of Staff

"Our military must be prepared to meet those challenges, and that preparation requires substantial investments in both personnel and equipment."

- Ken Calvert, U.S. Representative



## **Corporate Leadership Voices**

Defense Technology leaders call for urgent reform, AI integration, and software-defined warfare to maintain strategic edge

## Mike Gallagher Head of Defense

### **Q** Palantir

- "Palantir is at the leading edge of deterrence in the 21st century – the era of softwaredefined warfare, where technological supremacy defines geopolitical survival."
- "Militaries that don't harness the power of advanced algorithmic warfare systems are basically unilaterally disarming."
- Emphasized partnerships with startups and primes to integrate software with legacy and next-gen hardware

## **Brian Schimpf CEO**



- "Today's most pressing national security challenges cannot be solved without Alenabled systems and autonomy at scale."
- Advocated for fielding AI systems to learn and iterate in real-world conditions
- Emphasized policy focus on how AI systems are employed, not just how they're developed
- Warned of China's aggressive Al militarization and urged U.S. leadership in ethical Al warfare

## Thomas M. Siebel CEO



- "The need for advanced, scalable Al solutions has never been more critical."
- Partnered with Collins Aerospace to deploy Al for mission readiness and decisionmaking
- Focused on C3 Al Readiness and Generative Al for Defense and Intelligence
- Described defense as a "large and rapidly growing business" for the company

#### Linden Blue CEO



- "Bold leadership is needed. Past reform efforts, often supervised by the very organizations most in need of reform, have failed."
- Urged reforms to speed up defense acquisition and foreign military sales
- Criticized Missile Technology Control Regime (MTCR) for overly restricting drone exports
- Called for time limits on Pentagon milestones and better accountability

#### Wahid Nawabi CEO



- "We are the original defense tech prime...
  integrating autonomy, AI, and computer
  vision into unmanned systems for decades."
- Highlighted vertical integration and rapid innovation cycles (18 months vs. 10 years)
- Described drones as "workhorses" in Ukraine and key to future battlefield ISR and loitering munitions
- Stressed affordability and modularity as key differentiators

## **Christopher E. Kubasik CEO**



- "Victory in this new era of great power competition will be determined by the ability to fuse software, AI, and hardware to give warfighters decision dominance."
- Proposed reforms to eliminate duplicative accounting rules, centralize contracting, and limit protests
- Highlighted Space Force collaboration to track hypersonic missiles using repurposed commercial tech



# MAPPING OF SELECT PRIVATELY HELD MARKET PARTICIPANTS



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+



<u>Larry.Gelwix@solomonpartners.com</u>

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



Employee Count (as a proxy for size)

100-300 300-500 500-700 700+

#### Contact

Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com



# PRIMER: C5ISR SOFTWARE AND ELECTRONICS APPLICATIONS WITHIN THE CONNECTED BATTLEFIELD



## **Table of Contents**

| Page 30 | Communications and Electronic Warfare Technologies                                                      |
|---------|---------------------------------------------------------------------------------------------------------|
| Page 36 | Find, Fix, Track, Target, Engage, Assess (F2T2EA) – Kill Chain<br>Sensors, Communications, and Software |
| Page 41 | Airborne Computing                                                                                      |



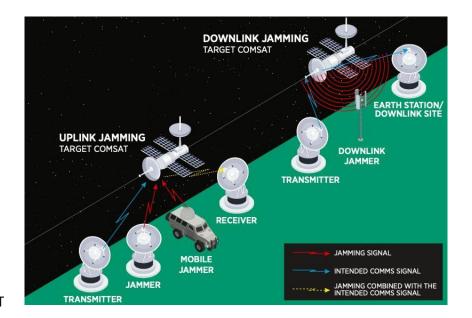
#### Communications and Electronic Warfare

#### Space Communications (SATCOM) Electronic Warfare (EW)

#### Uplink Jamming

This approach targets the satellite itself. A ground-based transmitter sends a powerful RF signal toward the satellite's receiver. If strong enough, it overwhelms legitimate commands or payload data, cutting control links and disrupting mission-critical communications

#### Downlink Jamming


Focuses on the user segment (e.g., GPS receivers on aircraft or soldier radios). Jammers emit noise on the same frequency as the satellite's downlink, preventing receivers from locking onto authentic signals. Effective even at low power, GPS jamming is a common battlefield tactic

#### Spoofing

A more sophisticated approach than jamming. Instead of blocking signals, it imitates them to deceive receivers. Adversaries can spoof command links to inject malicious instructions or transmit false PNT (Positioning, Navigation, Timing) data, misleading forces about location or timing, potentially causing severe operational consequences

#### Directed Energy Weapons (DEWs)

Goes beyond signal interference to physical damage. High-powered lasers or microwave systems can blind optical sensors or permanently damage components like solar panels. These non-kinetic weapons degrade or destroy space assets without creating orbital debris









#### Communications and Electronic Warfare

#### Space Communications (SATCOM) Cyber Warfare

#### Prevalence and Growth

Cyber warfare is one of the most prevalent and rapidly evolving threats to space systems. Expansion of satellite constellations, especially commercial ones, has greatly increased the digital attack surface

#### Ground Segment Targeting

Cyber warfare often targets the most vulnerable link in the chain, the ground segment. That includes mission control centers, network infrastructure, or the software that governs the entire system

#### 2022 Russian Cyber Attack

This targeted attack against ViaSAT's satellite broadband service disrupted communications in Ukraine and across Europe, just as the invasion was starting, showing its immediate real-world impact

#### Methods of Deployment

Includes injecting malware and launching distributed denial-ofservice, or DDoS, attacks to overwhelm communication links and gaining unauthorized access to steal sensitive data. The consequences range from disrupting critical services to espionage









#### Communications and Electronic Warfare

#### Link 16

#### Role and Importance

For decades, Link 16 has been the primary tactical data link for NATO and allied forces, allowing aircraft, ships, and ground units to share a near real-time, common operational picture, tactical data, messages, imagery, and voice

#### Security and Technical Characteristics

It uses strong encryption, frequency hopping, and spread spectrum waveforms providing jamming resistance, while operating in the L frequency band between 960 MHz and 1.215 GHz. This frequency band fundamentally limits its transmissions to line of sight, or LOS

#### Overcoming Vulnerabilities

In modern operations spanning vast distances, the LOS limitation has been overcome by using SATCOM systems as relays, bending the signal over the horizon using a satellite. However, reliance on SATCOM introduces a single point of failure. If satellites are compromised, extended connectivity collapses

#### Industry Note

In January 2023, L3Harris acquired Link 16 from ViaSAT for \$1.96 billion





#### Airborne Relays

#### Historical Context

The concept of using an aircraft as a flying communication node was proven effective in the Vietnam War

#### Modern Solutions

Today, unmanned aerial vehicles, UAVs, with long endurance, can stay up for days. Similar solutions are offered as HAPS or High-Altitude Platform Stations, such as ones developed by Airbus Zephyr, AeroVironment, and Sceye

#### Protocols and Integration

They can be ideal platforms for carrying sophisticated radio relay packages, and act as gateways, translating between different data links and crucially extending LOS networks like Link 16 over the horizon. They often use protocols like JREAP, the Joint Range Extension Applications Protocol, to do this bridging

#### Collaborative Combat Aircraft (CCAs)

In the context of manned-unmanned teaming, CCAs are envisioned to be key nodes in this airborne network. They'll help form a dynamic mesh that connects the entire force fighters, bombers, ground troops, and command centers







#### Communications and Electronic Warfare

#### **High Frequency Radios**

#### Purpose and Role

High frequency radios are resilient radio technologies that provide beyond line of sight, or BLOS, communication options

#### Technical Characteristics

High frequency, or HF, radio operates in a lower frequency band, typically 3 to 30 MHz, and achieves long-distance communication by refracting signals off the ionosphere, the upper layer of the atmosphere

#### Key Advantages

It requires no intermediate infrastructure like a satellite or a relay aircraft. This makes it a vital contingency layer, especially when SATCOM is denied or in difficult terrain like mountains

#### Modern Enhancements

They now incorporate features like Wideband data transmission (WBHF), a type of HF radio that uses a wider bandwidth to achieve higher data rates, and Automatic Link Establishment (ALE), which automatically finds and selects the best frequency to use based on conditions





#### **Tropospheric Scatter**

#### Purpose

Provides Beyond Line of Sight (BLOS) communication for higher bandwidth needs than HF radio can deliver and serves as an alternative when SATCOM is unavailable or vulnerable

#### Functional Overview

This technique bounces microwave signals off turbulence in the troposphere, the lower part of the atmosphere, to get over the horizon

#### Advantages

It extends network range and increases throughput compared to HF, without relying on vulnerable satellite resources

#### Limitations

While robust, it is generally slower than SATCOM and best suited as a backup option







#### Communications and Electronic Warfare

#### Laser Communications (LASERCOM)

#### Overview

Represents a major leap in secure, high-speed communications, notably offering Low Probability of Intercept/Detection (LPI/LPD)

#### Performance

Systems like the Talon HATE pod and other developmental terminals, offer extremely high fiber optic-like data rates. Over one gigabit per second. Potentially hundreds of times the capacity of conventional RF

#### Security Advantage

The advantage of LASERCOM also includes its inherent security. The signal is transmitted in a narrow-focused beam of light, akin to a laser pointer. That makes it exceptionally difficult for an adversary to detect, intercept or jam. An adversary would have to be in the exact spot where that beam is pointed to know it's transmitting. It provides unparalleled LPI LPD and anti-jam performance, for example, to link aircraft stealthily

#### Limitations

The main constraint is its reliance on a precise, unobstructed line of sight, and it's susceptible to disruption by atmospheric conditions, such as clouds, thick fog, and heavy rain









#### Communications and Electronic Warfare

#### Mechanically Based Antenna (AMEBA) and Safer Warfighter Communications

#### Overview and Goals

DARPA is exploring paradigm-shifting communication technologies for the most challenging environments called AMEBA, Mechanically Based Antenna. It aims to develop portable transmitters for the ultra-low frequency, ULF, and very low frequency VLF bands

#### Functionality

These signals have immense wavelengths, so long they can penetrate dense media like seawater, soil, and rock. This creates the potential for communicating directly with submerged submarines or personnel inside underground facilities opaque to normal radio waves

#### Safer Warfighter Communications

Another DARPA program, Safer Warfighter Communications, is developing technologies to enable secure and resilient communications over the public internet. The focus is on masking user identity and location from hostile surveillance

#### Impact

It could provide a critical emergency communication pathway if dedicated military networks completely fail









Sources: DARPA, HRL Laboratories

Find, Fix, Track, Target, Engage, Assess (F2T2EA) - Kill Chain Sensors, Communications, and Software

#### Active Electronically Scanned Array (AESA Radar)

#### Overview

Active Electronically Scanned Array, or AESA, radars represent a leap over the older mechanically scanned radars. Instead of a single big transmitter dish that physically moves back and forth, an AESA consists of a flat array containing hundreds, sometimes thousands, of small solid state transmitter sieve modules

#### • Electronic Beam Steering

Each module can be controlled independently by a computer. The radar beam can be steered electronically in milliseconds without moving parts, allowing the radar to perform multiple functions simultaneously, such as tracking multiple air targets in one direction while scanning the ground in a different direction. AESA can radiate multiple beams at different frequencies at the same time

#### Critical Advantages

Critical advantages include low probability of intercept detection, LPI-LPD, and jamming resistance. By spreading its energy across a wide band of frequencies, rapidly changing frequencies with every pulse and using very complex waveforms, an AESA radar makes its signal difficult for an enemy's electronic surveillance systems to distinguish from background noise. That same rapid frequency hopping and beam agility makes it difficult for traditional jammers to lock on to and disrupt the radar's operation effectively

#### Operational Impact

These features allow a fighter to use its most powerful sensor, the radar, to generate a fire control quality track on a target while significantly minimizing its own electronic signature, reducing the risk of giving away its position







Find, Fix, Track, Target, Engage, Assess (F2T2EA) - Kill Chain Sensors, Communications, and Software

#### Infrared Search and Track (IRST)

#### Functional Overview

An Infrared Search and Track, or IRST system, is a heat-seeking sensor that is passive (it does not transmit). It scans the airspace for the infrared signature emitted by targets, primarily the heat generated by jet engine exhausts or the friction of air passing over an airframe at high speed

#### Detectability

Because it doesn't emit, it is undetectable by enemy electronic warfare systems that are listening for radar signals

#### Performance Characteristics

IR systems are typically highly effective at high altitudes, where the colder background air provides better contrast for detecting hot targets. They can often detect targets, especially from the rear aspect, at long ranges. For example, the Eurofighter Typhoon's Pirate IRST is credited with detecting subsonic fighters from 90km away from the rear (Leonardo Electronics produces the Pirate IRST)

#### Operational Role

IRST is a critical complement to AESA radar, it's immune to RF jamming, and it often provides excellent angular resolution, helping pinpoint a target's direction. Advanced systems like the F-35's Distributed Aperture System, or DAS, use multiple IR sensors fused together to provide a complete 360-degree spherical infrared view around the aircraft giving the pilot heat vision in all directions









Find, Fix, Track, Target, Engage, Assess (F2T2EA) - Kill Chain Sensors, Communications, and Software

#### Passive Radar and Electronic Support Measures (ESM)

#### Overview

An aircraft can prosecute a kill chain by listening for signals emissions. Passive radar and electronic support measures (ESM) suites are designed to detect radio frequency signals from enemy aircraft radars, surface-to-air missile site radars, and other communication systems

#### Silent Tracking

This allows the fighter to track, and sometimes target, the emitter without ever turning on its own radar, staying electronically silent

#### Passive Coherent Location

Here, the aircraft's receiver doesn't transmit itself, but instead uses reflections from third-party transmitters of opportunity like powerful commercial FM radio, TV broadcast towers, or cell phone base stations. The aircraft listens for how those ambient signals bounce off objects in the sky. By analyzing the Doppler shifts and timing differences, it can detect and track airborne targets without emitting energy





### Automatic Target Recognition (ATR)

#### Overview

Automatic Target Recognition, or ATR, is the application of artificial intelligence and advanced algorithms to autonomously analyze the sensor data coming in from the radar or the IRST. Instead of presenting the pilot with raw sensor data, an ATR system processes data, compares its features to a library of known threat signatures stored on board, and provides a high-confidence identification

#### Purpose

Once a target is detected, the aircraft, or the weapon itself, needs to be able to identify it confidently and then engage it with a weapon that can find it its own way to the target

#### Operational Example

For instance, it might label a radar track as SU-35 Flanker or an image as T-72 tank. ATR can dramatically reduce pilot workload and significantly accelerate the targeting cycle, known as the OODA loop (observe, orient, decide, act)







Find, Fix, Track, Target, Engage, Assess (F2T2EA) - Kill Chain Sensors, Communications, and Software

#### **Anti-Radiation Missiles**

#### Operational Purpose

Anti-radiation missiles, like the AGM-88G, AARGM-ER (Northrop Grumman), are designed primarily to destroy enemy air defense radars

#### Functional Overview

Anti-radiation missiles don't need precise target coordinates. Instead, they have a seeker that actively homes in on the radio frequency emissions coming from a hostile surface-to-air missile site's radar

### IR, or Electro-Optical EO-Guided Weapons

#### Overview

IR, or electro-optical EO-guided weapons, such as the latest AIM-9X Sidewinder air-to-air missile (Raytheon), use an imaging infrared seeker to lock onto the heat signature of an enemy aircraft

#### Operational Example

Anti-ship missiles like the Naval Strike Missile, NSM (Kongsberg Defense & Aerospace), use an advanced imaging IR seeker combined with an on-board target database to autonomously recognize and strike specific classes of ships, distinguishing between targets in a cluttered harbor. These weapons essentially have their own eyes using heat or visible light















Find, Fix, Track, Target, Engage, Assess (F2T2EA) - Kill Chain Sensors, Communications, and Software

#### Multi-Mode Seeker Munitions

#### Overview

Multi-mode seekers, like the GBU-53B Small Diameter Bomb II (Raytheon), also known as Stormbreaker, feature a sophisticated tri-mode seeker

#### Sensor Technologies

It combines millimeter wave radar, which can see through weather, imaging infrared for heat signatures and target ID, and a semi-active laser detector, to home on a laser spot designated by the launch aircraft or another source

#### Capabilities

This combination allows the weapon to autonomously search for, detect, classify, and engage moving targets on the ground or sea in any weather condition, day or night, all without reliance on GPS for terminal guidance







## Airborne Computing

#### **Inertial Navigation System**

#### Overview

The cornerstone of any non-GPS navigation suite is the inertial navigation system, or INS; a completely self-contained direction-finding device

#### Functionality

Uses a combination of gyroscopes to sense rotation and accelerometers to sense changes in velocity. After it receives an initial starting position, it performs dead reckoning, calculating where it is based on where it started and how it moved. It measures every turn, climb, dive, acceleration, deceleration, and continuously calculates the aircraft's or vessel's current position, orientation, and velocity without any external signals

#### Strengths

Autonomy is its greatest strength, making it completely immune to the jamming and spoofing that can cripple other networks

#### Limitations

Every INS is subject to integration drift. Tiny, unavoidable errors in the sensor measurements, which accumulate to progressively larger errors in the calculated position

#### Accuracy Maintenance

To remain accurate over the course of a long mission, an INS must be periodically updated or corrected by some external positioning source. Modern fighters use highly reliable strap-down systems, employing things like ring laser gyroscopes or fiber optic gyroscopes. These have no moving parts and are more accurate than moving platforms of the past, but they still drift







## Airborne Computing

#### Modern Celestial Navigation (Star Trackers)

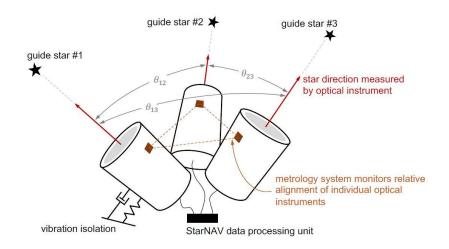
#### Overview

Modern celestial navigation or Star Trackers determine position by precisely measuring the angles of celestial bodies

#### Key Characteristics

Like an INS, it's unjammable and passive, emitting no signals that could give away an aircraft's position

#### Modern Implementation


Modern military applications have replaced the manual sextant with highly automated star trackers. These are sophisticated electro-optical systems that can lock onto multiple stars simultaneously, even during the day by looking in the infrared spectrum or using filters

#### Performance and Accuracy

They use the known positions of these stars from an internal almanac to calculate a highly accurate geographic fix. This fix is then used to correct the drift of the primary INS

#### Performance and Accuracy

Systems developed by companies like Honeywell have demonstrated accuracy down to about 30 meters circular error probable, or CEP50, on par with early GPS, recently demonstrated in a land vehicle application









## Airborne Computing

#### Terrain Contour Matching (TERCOM)

#### Overview

When the stars are obscured, an aircraft can look down to the earth itself for positioning cues. This is accomplished through several complementary techniques that all rely on comparing real-time sensor data to preloaded digital maps stored on board

#### Functionality

TERCOM works by using a radar altimeter to measure the profile of the terrain directly beneath the aircraft. As the plane flies along, this stream of altitude data creates a unique contour line. That unique contour line is then compared against a stored 3D digital elevation map of the area. A successful match provides a very precise position update

#### Historical Use and Application

It was historically used for low-altitude cruise missile guidance, but the principle is applicable to fighter aircraft, especially for updates over land

#### Strengths

Its accuracy is consistent regardless of flight duration because it keeps getting new fixes, which prevents the cumulative drift associated with the INS

#### Limitations

Its primary limitation is dependency on varied terrain. It's much less effective over featureless landscapes like open water or flat deserts where there's no distinct contour to match







# Airborne Computing

#### Magnetic Anomaly Aided Navigation

#### Overview

The Earth's magnetic field isn't vertically uniform. It contains subtle local variations or anomalies, distortions caused by geological features or man-made structures

#### Functionality

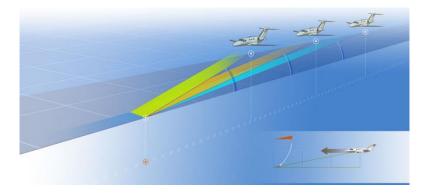
By using a sensitive magnetometer (a high-tech compass), to measure these tiny anomalies and comparing the pattern of readings to a preloaded magnetic map of the area, an aircraft can determine its position

#### Key Characteristics

That is another passive and unjammable technology. It can also work underwater or underground, where GPS or visual methods fail

### Vision-Based Navigation (VNAV)

#### Overview


Vision-Based Navigation, or VNAV, operates on a very similar principle to TERCOM, using imagery instead of altitude

#### Functionality

It employs electro-optical, visible light, or infrared cameras, often the same ones used for targeting, to capture a live view of the ground below. This live view is then compared against a database of high-resolution satellite or aerial imagery stored on board. Advanced pattern matching algorithms and artificial intelligence can identify unique landmarks to find a precise match in the image database. This yields a highly accurate position fix

#### Performance and Implementation

Honeywell has demonstrated VNAV with 10-meter accuracy. Because it can often be implemented as a software upgrade, utilizing an aircraft's existing targeting pods or other sensors, VNAV can be a powerful and relatively cost-effective solution





## Airborne Computing

### Airborne Computing at the Edge

#### Battlefield Software and Databases

Onboard software and databases powering ATR libraries and seeker logic are critical battlefield infrastructure. The quality of ATR algorithms and the completeness of target signature libraries are as vital to mission success as the warhead itself

#### Cognitive Challenges

Pilots must manage information overload and command assets in high-stress, degraded environments. This requires data fusion and human-machine teaming

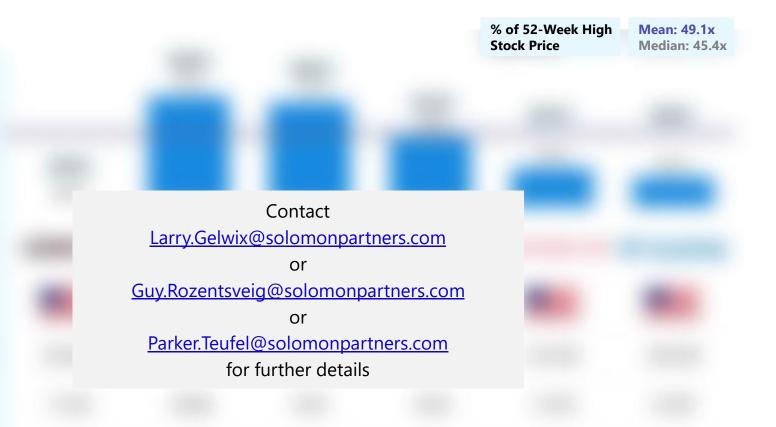
#### Human-Machine Interface (HMI) Solutions

Improvements include intuitive interfaces, advanced graphics, voice commands, augmented reality, and intelligent decision aids. Automation supports pilots by filtering noise, fusing sensor data, and presenting clear, prioritized information with recommended actions instead of raw data. Future CCA teams will enhance this process based on pilot intent

#### DARPA ASPN Program

DARPA's All Source Positioning and Navigation (ASPN) developed a plug-andplay Fusion Engine to integrate data from any source. It combines INS, star tracker, TERCOM, magnetic sensors, and non-traditional signals (e.g., radio towers, cellular signals), assesses reliability in real time, and computes a single robust positioning solution more accurate than any individual input








# RELEVANT PUBLIC COMPANIES AND SELECT PRECEDENT TRANSACTIONS



# Select U.S. Defense Electronics Public Company Comparables





# **Select Allies Defense Electronics Public Company Comparables**

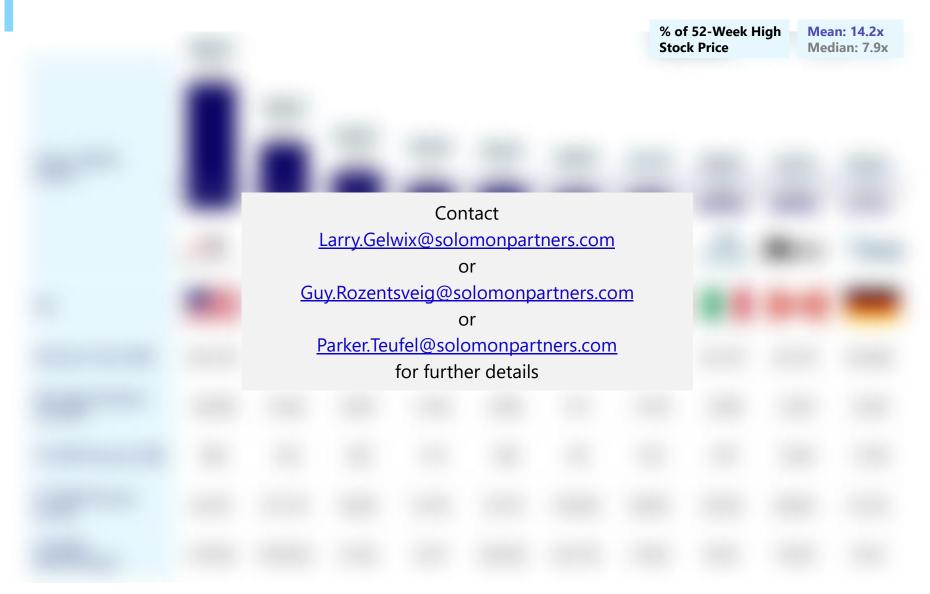
% of 52-Week High Stock Price Mean: 21.4x Median: 24.7x

### Contact

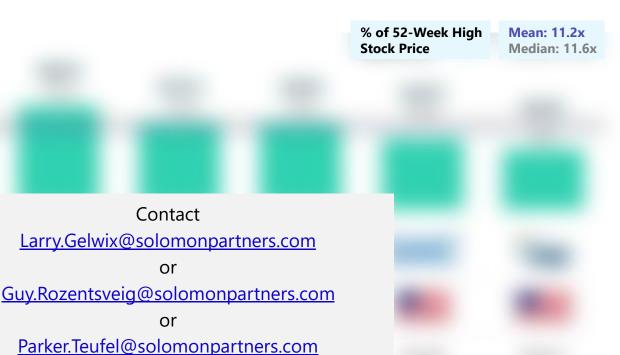
Larry.Gelwix@solomonpartners.com

or

Guy.Rozentsveig@solomonpartners.com


or

Parker.Teufel@solomonpartners.com


for further details



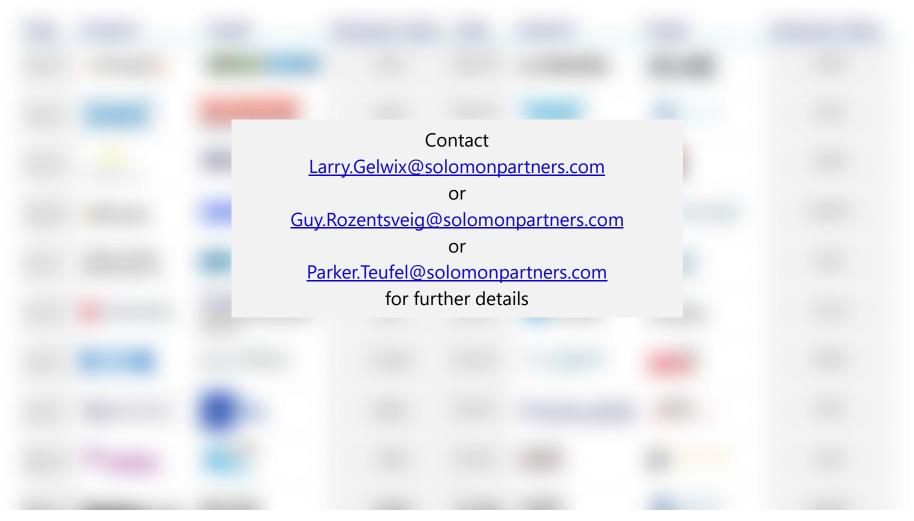
# **Select Space Public Company Comparables**



# **Select Software and IT Public Company Comparables**



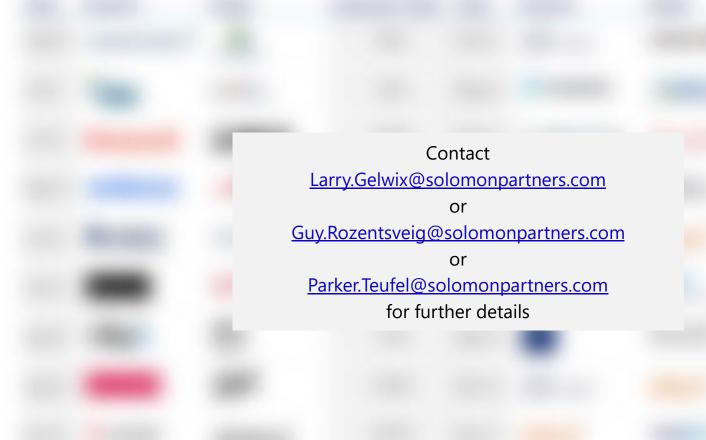



Contact

or

for further details

# **Select Precedent Transactions**


Defense Technology M&A Highlights





# **Select Precedent Transactions (Cont.)**

Defense Technology M&A Highlights





# **Select Precedent Transaction Detail**

Defense Technology companies have traded for ~15x over the last four years

### Contact

<u>Larry.Gelwix@solomonpartners.com</u>

or

Guy.Rozentsveig@solomonpartners.com

or

Parker.Teufel@solomonpartners.com

for further details



# SOLOMON PARTNERS OVERVIEW



# **Our Strategic Partner: Natixis**

A Global Network

As an independently operated affiliate of Natixis, Solomon provides clients with access to strategic advisory services and proprietary financing capabilities throughout Europe, Asia Pacific and the Americas.

- Capital markets, cross-border M&A and structured financing capabilities
- Global platform, part of Group BPCE the 2<sup>nd</sup> largest banking group in France
- Presence in key markets

**GLOBAL REACH** 

Countries

**LOCAL NETWORK** 

M&A Professionals

### **M&A PLATFORM**

Azure Capital

**CLIPPERTON** 

















#### **USA**

Chicago

Miami

New York

Berlin

Brussels

**EUROPE** 

Amsterdam

Tampa London Madrid Milan

Munich

**Paris** 



#### **APAC**

Beijing

Hong Kong

Melbourne

Perth

#### **MIDDLE EAST**

Dubai



Shanghai

Shenzhen



# **Product Offerings & Capabilities**

### M&A and Strategic Advisory

M&A is the core of Solomon's advisory services. Our bankers have unparalleled track records, providing comprehensive strategic solutions tailored to generate long-term shareholder value.

In addition to our core coverage sectors, Solomon has a team of dedicated bankers who specialize in complex M&A assignments.

#### **CAPABILITIES**

- Sellside & Buyside
- Strategic Advisory
- Cross-Border M&A
- Special Committees
- Fairness Opinions
- Activism Defense

### **Capital Advisory**

Solomon's Capital Advisory team works closely with clients to provide comprehensive, conflict-free guidance at any stage of an organization's life cycle.

Capital Advisory partners seamlessly with the firm's best-in-class industry experts to provide clients with value-maximizing advice.

#### **CAPABILITIES**

- Financing Advisory
- Debt Advisory & Capital Solutions
- Liability Management
- Financial Restructuring



# **In-Depth Knowledge Across Industries**

Industrial Technology

Motion & Flow Control

Industrial Services

& Software

Transportation

Consumer Healthtech

# Sector expertise

| <b>Business Services</b>                                                                                                                                          | Consumer Retail                                                                                                                                                                                                                                                                                                 | sumer Retail Distribution                                                                                                                |                                                                                                                                                      | Financial Institutions                                                                                                       |                                                                                                                                                                                                       | Financial Sponsors                                                    |                                                                                                      | Fintech                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Environmental Services</li> <li>Facility Services</li> <li>Industrial Services</li> <li>Infrastructure Services</li> <li>Residential Services</li> </ul> | <ul> <li>Apparel &amp; Footwear</li> <li>Automotive</li> <li>Consumer Durables Electronics</li> <li>Consumer Services</li> <li>Food &amp; Beverage</li> <li>Health, Wellness &amp; E</li> <li>Home Furnishings / Improvement</li> <li>Jewelry / Luxury</li> <li>Leisure &amp; Lifestyle</li> <li>Pet</li> </ul> | Motion Contro  Building Produ  Chemicals  Consumer  Food & Bevera                                                                        | ol<br>acts<br>age<br>oly<br>nabled &<br>els                                                                                                          | <ul> <li>FMOs</li> <li>Insurance Services</li> <li>Real Estate Services</li> <li>Tech Enable</li> <li>Distributio</li> </ul> | GAs, MGUs Benefits Agencies, IMOs, & Insurance e & Mortgage                                                                                                                                           | <ul><li>Credit</li><li>Family</li><li>Hedge</li><li>Pension</li></ul> | e Equity<br>: Managers<br>/ Offices<br>e Funds<br>on Funds<br>eign Wealth Funds                      | <ul> <li>Credit Cards</li> <li>Auto, Equipment &amp; Fleet<br/>Finance</li> <li>Consumer Lending &amp;<br/>Banking</li> <li>Capital Markets<br/>Infrastructure</li> <li>Point Of Sale /<br/>Retail Finance</li> </ul> |
| Grocery, Pharmacy<br>& Restaurants                                                                                                                                | Healthcare                                                                                                                                                                                                                                                                                                      | Industrials                                                                                                                              | Infrastruc<br>Power & I                                                                                                                              | ture,<br>Renewables                                                                                                          | Media &<br>Entertainment                                                                                                                                                                              |                                                                       | Professional Service                                                                                 | es Technology                                                                                                                                                                                                         |
| <ul><li> Grocery Retail</li><li> Pharmacy</li><li> Restaurants</li><li> Food Distribution</li></ul>                                                               | <ul> <li>Medical Devices</li> <li>Healthcare Services</li> <li>HCIT</li> <li>Outsourced Pharma<br/>Services</li> <li>Nuclear Medicine &amp;<br/>Radiopharmaceuticals</li> <li>Specialty &amp; Generic<br/>Pharmaceuticals</li> </ul>                                                                            | Advanced Manufacturing Aerospace & Aviation Services Automation Capital Goods & Electrical Equipment Defense & Space Government Services | <ul> <li>Transport<br/>Logistics</li> <li>Digital Inf<br/>Services</li> <li>Power</li> <li>Renewabl</li> <li>Energy Tr</li> <li>Utilities</li> </ul> | rastructure &                                                                                                                | <ul> <li>Advertising Se</li> <li>Content Creating Distribution</li> <li>Event Technological Retail To Marketing Seron</li> <li>New Media</li> <li>On-Premise Moderation of Marketing Seron</li> </ul> | on /<br>ogy<br>ech<br>vices<br>edia                                   | <ul> <li>Human Capital</li> <li>Specialized Broker-<br/>Dealers</li> <li>Consulting Firms</li> </ul> | <ul> <li>Information</li> <li>Data</li> <li>Analytics</li> <li>Software</li> <li>Tech-Enabled Services</li> </ul>                                                                                                     |

Professional AV

Publishing

Site-Based /

Experiential

Entertainment



# **Our Industrials Team**

### Aerospace & Defense and Mission-Critical **Industrials**



**Larry Gelwix** Partner, Head of Industrials

larry.gelwix @solomon partners.com



**Kent Fisher** Industry Advisor (Fmr. CFO of Boeing Commercial Airplanes, Head of Commercial Supply Chain) kent.fisher @solomon partners.com

#### **Business Services**



Tim Shea Partner, Head of **Business Services** 

tim.shea @solomon partners.com



Michael Vinciguerra Managing Director

michael.vinciguerra @solomon partners.com



Distribution

Partner, Co-Head of

jason.kliewer @solomon



**Nick Troyer** Partner, Co-Head of Distribution

nick.troyer @solomon partners.com



**Guy Rozentsveig** Managing Director

guy.rozentsveig @solomon partners.com



Parker Teufel Vice President

parker.teufel @solomon partners.com



Ben Zinder Managing Director

ben.zinder @solomon partners.com



**Austin May** Director

austin.may @solomon partners.com



**David Schultz** Director

partners.com

david.schultz @solomon partners.com



**Gregg Suglia** Director

gregg.suglia @solomon partners.com



**David Wawrzak** Associate

david.wawrzak @solomon partners.com



Nick Magnini Associate

nick.magnini @solomon partners.com



Jonathan Goldstein Vice President

jonathan.goldstein @solomon partners.com



**Chris Chase** Associate

chris.chase @solomon partners.com



Sebastian Zapata Associate

sebastian.zapata @solomon partners.com



Will Buser Associate

will.buser @solomon partners.com



Jay Batra Analyst

jay.batra @solomon partners.com



**Thomas Doyle** Analyst

thomas.doyle @solomon partners.com



**Anthony Biscardo** Associate

anthony.biscardo @solomon partners.com



Stepan Marchuk Analyst

stepan.marchuk @solomon partners.com



**Carter Matthews** Associate

carter. matthews @solomon partners.com



**Danny Mitchell** Analyst

danny.mitchell @solomon partners.com



Joe Shimamoto Analyst

joe.shimamoto @solomon partners.com



Alex Zhou Analyst

alex.zhou @solomon partners.com



**Patrick Tucker** Analyst

patrick.tucker @solomon partners.com



Rahul Jasti Analyst

rahul.jasti @solomon partners.com



Nico Ontaneda Analyst

nico.ontaneda @solomon partners.com



Jon Soufia Analyst

jon.soufia @solomon partners.com



# Disclaimer

The information contained in this document is based solely on publicly available information. Solomon Partners Securities, LLC ("Solomon") has relied, without independent investigation or verification, on the accuracy, completeness and fair presentation of all such information. None of Solomon, its affiliates or its or their respective employees, directors, officers, contractors, advisors, members, successors, representatives or agents makes any representation or warranty in respect of the accuracy, completeness or fair presentation of any information or any conclusion contained herein. The information contained in this presentation should not be assumed to have been updated at any time subsequent to date shown on the first page of the presentation and the delivery of the presentation does not constitute a representation by any person that such information will be updated at any time after the date of the presentation. Solomon, its affiliates and its and their respective employees, directors, officers, contractors, advisors, members, successors and agents shall have no liability with respect to any information or matter contained herein.

This presentation has been prepared solely for informational and illustrative purposes and is not to be used or considered as an offer to sell, or a solicitation of an offer to buy, any security or instrument or the provisions of an offer to provide investment services or to undertake any transaction.

Nothing in this presentation constitutes regulatory, investment, legal, accounting or tax advice, or a representation that any investment or strategy is suitable or appropriate to your individual circumstances. Each individual or entity receiving this document or participating in a related transaction shall be responsible for obtaining all such advice as it thinks appropriate on such matters and shall be responsible for making its own independent investigation and appraisal of the risks, benefits and suitability of the transactions as to itself. Any discussions of past performance should not be taken as an indication of future results, and no representation, expressed or implied, is made regarding future events or results. This presentation is a marketing presentation. It does not constitute independent investment research and has not been prepared in accordance with the legal requirements designed to promote the independence of investment research. Moreover, this presentation has not been prepared by the research department of Natixis, of which Solomon is an affiliate. Natixis may trade as principal or have proprietary positions in securities or other financial instruments that are referred to herein. This presentation is intended only to provide observations and views as expressed herein, which may be different from, or inconsistent with, the observations and views of Natixis analysts or other Natixis sales and/or trading personnel, or the proprietary positions of Natixis. In addition, Solomon and/or its affiliates, officers, directors and employees, including persons involved in the preparation or issuance of this presentation, may, from time to time, have long or short positions in, and may buy or sell the securities or other financial instruments referred to herein.

This presentation is confidential and may not be distributed to any other person or replicated in any form without the prior written consent of Solomon.

